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Abstract. Domain generalization aims to train a robust model on mul-
tiple source domains that generalizes well to unseen target domains.
While considerable attention has focused on training domain general-
izable models, a few recent studies have shifted the attention to test
time, i.e., leveraging test samples for better target generalization. To
this end, this paper proposes a novel test-time domain generalization
method, Domain Conditioned Normalization (DCN), to infer the nor-
malization statistics of the target domain from only a single test sample.
In order to learn to predict the normalization statistics, DCN adopts
a meta-learning framework and simulates the inference process of the
normalization statistics at training. Extensive experimental results have
shown that DCN brings consistent improvements to many state-of-the-
art domain generalization methods on three widely adopted benchmarks.

Keywords: domain generalization, batch normalization, test time adap-
tive, distribution shift

1 Introduction

The performance of deep neural networks degrades drastically when the distri-
bution of train (source) and test(target) data are different. In order to solve
the problem of distribution shift, domain generalization(DG) aims to train a ro-
bust model on multiple source domains that generalizes well to arbitrary unseen
target domains. Existing DG methods can be mainly divided into three cate-
gories: invariant representation learning which aims to learn a shared feature
space across source domains, data augmentation which expands the source dis-
tributions, regularization techniques which are utilized to learn more semantic
information from source domains.

Despite their success, most existing DG methods only focus on the training
stage, i.e., how to train a generalizable model based on source domains. In fact,
DG is naturally an ill-posed problem due to information incompleteness. Knowl-
edge of the target domain may greatly help the model generalization. Actually,
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(a) Standardization statistics (b) Rescaling statistics

Fig. 1. The difference in the first BN layer for (a) standardization statistics and (b)
rescaling statistics. We train one model on all domains of PACS benchmark with dif-
ferent BN layers for each domain. The L2 distance is used to measure the statistics
differences between every two domains.

the model always has access to at least one unlabeled test sample at inference
which may provide important clues about the target domain. Some recent stud-
ies start to investigate how to make use of the test sample at inference to improve
a model’s generalizability to the target domain. TTT [33] and TENT [37] utilize
target domain data to update model parameters by constructing an unsupervised
loss. Dubey et al. [7] use some target samples to construct domain embeddings
so that the classifier can make dynamic predictions based on it. T3A [13] com-
putes pseudo-prototype representation for each class with past predicted target
samples to modify the classifier. However, these methods have the following two
limitations. (1) Updating parameters with target data increases the inference
time significantly and may lead to catastrophic failure; (2) Batches of data are
not necessarily available at inference and there is no guarantee that the domain
labels of test samples are available.

In this paper, we propose a test-time DG method called Domain Conditioned
Normalization (DCN), which estimates the normalization statistics for target do-
main at inference. DCN is based on the observation that the statistics (includ-
ing standardization and rescaling statistics) in batch normalization(BN) [12] are
unique for each domain and larger distribution shift is reflected by the increased
difference in statistics, as shown in Fig. 1. Thus, to improve the domain general-
izability of a model at test time, a straight-forward solution is to normalize the
test data with the statistics of the domain it comes from. The challenge lies in
we can assume access to only one test sample. Nevertheless, the good news is
that, the source statistics are expected to contain essential semantic and style
information shared by the source and target domains. We thus attempt to com-
bine the instance statistics from a single test sample that reflect domain-specific
information for the target domain, with the source statistics to infer the statis-
tics of the target domain. The final inferred statistics is then used to normalize
this test sample during inference.
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In order to infer the target statistics, a meta-learning framework is adopted
by DCN. In each meta-iteration, one source domain is chosen as the meta-target
domain and the other source domains are considered as meta-source domains.
DCN learns to infer the statistics of the meta-target domain by approximating
the ground-truth meta-target statistics with the instance statistics of the meta-
target sample and the statistics of meta-source domains. At testing, DCN infers
the statistics of the target domain with a single test sample and the source
statistics, which is used to replace the source statistics in the trained model for
prediction. Our DCN only requires one forward pass of a single target sample,
which avoids training at test time and requires no batched test data.

To validate the effectiveness of the proposed method, we experiment on sev-
eral standard DG benchmarks, namely PACS [17], VLCS [35], OfficeHome [36].
Extensive experimental results have shown that DCN brings consistent improve-
ments to the state-of-the-art DG approaches, indicating that the inferred target
statistics obtained from a single test sample does help model generalize better
across domains. We have also demonstrated that DCN becomes more effective
as the distribution shift increases.

2 Related Work

2.1 Domain Generalization

The main goal of domain generalization(DG) is to learn a robust model from
multiple available source domains that can generalize well to arbitrary unseen
target domains [38,44]. Existing DG methods can be roughly categorized into
three classes: invariant representation learning, data augmentation and regular-
ization methods. Invariant representation learning aims to learn a shared fea-
ture space that retains the semantic information across source domains. Some
work [19,22] learn this shared feature space in an adversarial training man-
ner. Another work [32,31,29] align second-order statistics or gradients to learn
the invariant representation. Data augmentation is also a common method for
DG research. DDAIG [45] and FACT [41] generate new images to enlarge the
training dataset. Different from augmentation at the image level, some meth-
ods [46,20,47] expand source distributions at the feature level. Another popular
approach in DG is to use regularization techniques. Self-supervised objective
is a popular choice as the regularization [2,39,16,4]. Another work [18,1] rely
on meta-learning to simulate the domain shift during training. Furthermore,
RSC [11] masks the maximum response gradient to learn more semantic infor-
mation. These approaches only focus on source domains at the training staget
and ignores the use of test data during inference.

2.2 Normalization in Neural Networks

Batch Normalization [12] is a common technique that optimizes the training
of deep network by reducing internal covariate shift. However, normalizing the
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target domain data with the source statistics is sub-optimal because there is
a distribution shift between source and target domains. To solve this problem,
BIN [27] combines different standardization statistics with the learnable weights.
ILM [14] learns the rescaling statistics for each sample by using neural networks.
DSON [28] proposes to learn separate BIN for each source domain and ensemble
the normalization for the target domain. MetaNorm [6] and ASR-Norm [8] learn
the adaptive statistics based on a single sample. Different from all the methods
above, our DCN uses both a single target sample and source statistics for adap-
tive normalization, so DCN can infer more accurate target statistics and achieve
better generalization performance.

2.3 Adaptation and Generalization at Test Time

Recently, a lot of work has begun to study test-time adaptation. TTT [33] and
TENT [37] update model parameters by training the target domain data with
an unsupervised loss function. Apart from that, some work improves model gen-
eralization with test data while avoiding training at test time. BN-Test [26] com-
putes statistics on batches of target samples to normalize them during inference.
Dubey et al. [7] use very few test samples to construct the domain embedding
for the target domain and use the domain embedding as a supplementary signal
to make adaptive predictions. T3A [13] computes the representation templates
with previous target samples and use these representation templates to modify
the classifier. Compared with these methods, our DCN only requires a single
test sample and avoids training during inference so that it avoids the increase of
inference time and memory overhead.

3 Methodology

We here attempt to explore adaptive normalization at test time by inferring the
target domain statistics with source domain statistics and a single target sample.
In this section, we first describe the formal formulation of domain generalization
and domain-specific batch normalization, followed by the details of our method,
Domain Conditioned Normalization (DCN).

3.1 Preliminary

Domain Generalization In domain generalization, the training dataset DS

consists of NS source domains. Each source domain Dd = {(xi
d, y

i
d)}

nd
i=1 (d ∈

{1, · · · , NS}) contains nd data and label pairs. There is also a target domain
DT , which is only available during testing. The goal of domain generalization
is to train a model fθ with DS that generalizes well on the target domain DT ,
where θ is the parameters of the model. A vanilla baseline is training with all
source domain data with the empirical risk minimization (ERM) objective:

min
θ

1

NS

NS∑
d=1

1

nd

nd∑
i=1

l(fθ(x
i
d), y

i
d), (1)
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where l(·) is the standard cross-entropy loss function for classification problems.

Domain Specific Batch Normalization BN [12] is a widely used training
technique in deep learning to reduce the internal covariate shift. The statistics in
BN represent the characteristics of the training dataset. However, when present
with multiple training domains, it is inappropriate to share the BN statistics
among different domains considering each domain have its own characteristics.
Therefore, in this paper, we employ DSBN [3] to separately store the domain-
specific statistics for each source domain, which makes data from different do-
mains go through different BN layers.

Given a batch of samples from domain d during training, the input feature
maps of a normalization layer is denoted by xd ∈ RN×C×H×W , where N denotes
the batch size, C denotes the number of channels, H and W denote height
and width respectively. DSBN first uses the domain-specific batch mean µbn

d

and variance σbn
d for standardization, then applies affine transformations on the

standardized features xstan
d with domain-specific rescaling parameters {γd, βd}.

The whole process is denoted as:

xstan
d =

xd − µbn
d√

σbn
d + ϵ

, (2)

xdsbn
d = γd · xstan

d + βd, (3)

where µbn
d , σbn

d , γd, βd ∈ RC and ϵ is a small constant for numerical stability. The
batch mean µbn

d and variance σbn
d are calculated as:

µbn
d =

∑
n,h,w xd

N ·H ·W
and σbn

d =

∑
n,h,w(xd − µbn

d )2

N ·H ·W
. (4)

Following standard implementations [12], we acquire the domain-specific mean
µd and variance σd of a source domain Dd through Exponential Moving Average
(EMA). With the help of DSBN, we obtain the domain-specific normalization
statistics (i.e., standardization statistics {µd, σd} and rescaling statistics {γd,
βd}) of different source domains, which facilitates the training of DCN.

3.2 Domain Conditioned Normalization

Our approach aims to use a single target sample and source domain-specific
statistics to infer the normalization statistics for an unseen target domain. To
accomplish this, we adopt a meta-learning strategy to simulate such a target
statistics inference task during each meta-iteration.

Specifically, within a meta-iteration, we randomly split the training domains
DS into two disjoint sets: one domain as meta-target and the others are meta-
source domains. In the meta-train stage, we train the backbone network on meta-
source domains and update the DSBN statistics of each meta-source domain
by minimizing the cross-entropy loss. In the meta-test stage, we update the
DSBN statistics of the meta-target domain in the same way to provide ground-
truth meta-target statistics. Then we train the DCN modules which take the
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Fig. 2. Illustration of DCN for each layer when Dd is the meta-target domain. We use
auto-encoders to infer statistics of Dd with input feature map fd and the meta-source
domains’ statistics and use the inferred statistics to normalize fd. Lstan and Lres are
L2 loss between the inferred statistics and the ground truth statistics.

statistics of the meta-source domains and a single meta-target sample as inputs,
to approximate the ground-truth meta-target statistics.

By looping over multiple meta-iterations, we hope the model would be able to
infer the DSBN statistics on a novel target domain during testing. The learning
process of DCN for a single layer is illustrated in Fig. 2, which can be fur-
ther divided into domain conditioned standardization and domain conditioned
rescaling. Next, we will describe these two parts in detail.

Domain Conditioned Standardization The standardization statistics stand
for the channel-wise mean µ and variance σ. To infer the meta-target standard-
ization statistics, we adopt an auto-encoder structure, where both the encoder
and decoder are composed of one fully-connected layer, followed by a ReLU ac-
tivation. The predictions of the standardization auto-encoder are conditioned on
the instance mean µi

d and variance σi
d of the meta-target sample xi

d, as well as
the standardization statistics {µp, σp} (p ̸= d, p ∈ {1, · · · , NS}) of the meta-
source domains. The instance mean µi

d and variance σi
d of xi

d are calculated as:

µi
d =

∑
h,w xi

d

H ·W
and σi

d =

∑
h,w(x

i
d − µi

d)
2

H ·W
. (5)

Inspired from [15,42], we assume the standardization statistics of one domain
to be a shifted version of those of another domain. Therefore, the meta-target
standardization statistics can be inferred in the form of a linear combination
of the meta-source standardization statistics and the instance statistics of xi

d,
which is specified as:

µ′
d =

1

NS − 1

∑
p̸=d

(wi
p,d · µi

d + (1− wi
p,d) · µp), (6)

σ′
d =

1

NS − 1

∑
p ̸=d

(wi
p,d · σi

d + (1− wi
p,d) · σp). (7)

where wi
p,d ∈ RC is the channel-wise linear combination weights learned from

the standardization auto-encoders. Intuitively, different channels correspond to
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different degrees of transferability from the meta-source Dp to the meta-target
Dd, so using a specific weight for each channel is a wiser choice.

To learn the combination weight wi
p,d, we adopt a similar strategy as [21,40]

by using the difference between the instance statistics {µi
d, σ

i
d} of xi

d and the
meta-source standardization statistics {µp, σp} as the inputs to the auto-encoder.
The difference metric is calculated by:

M i
p,d =

∣∣∣∣∣ µp√
σp + ϵ

− µi
d√

σi
d + ϵ

∣∣∣∣∣ . (8)

Intuitively, the channel-wise statistics difference M i
p,d can be viewed as an

indicator of the domain transferability, where a small value of an entry in M i
p,d

means the meta-source domain and the meta-target domain are similar in the
corresponding channel, and vice versa. Such a transferability indicator allows the
auto-encoder to learn a better trade-off between the meta-source standardization
statistics and the instance statistics of xi

d. Finally, the output of the decoder goes
through a sigmoid activation to scale the learned weights into [0, 1].

After obtaining the inferred standardization statistics of Dd through Eq. (6)
and Eq. (7), we train the standardization auto-encoder by minimizing the L2
distance with the ground-truth standardization statistics {µd, σd} obtained from
DSBN on the meta-target domain:

Lstan = ||µ′
d − µd||22 + ||σ′

d − σd||22. (9)

Domain Conditioned Rescaling The rescaling statistics stand for the channel-
wise affine parameters {γ, β}. Denote the rescaling statistics of the meta-target
domain Dd and the meta-source domain Dp as {γd, βd} and {γp, βp}, respec-
tively. Similar as domain conditioned standardization, our goal is to learn a
rescaling auto-encoder to infer the rescaling statistics of the meta-target domain
Dd. The rescaling auto-encoder shares the same structure as the standardization
auto-encoder, while its predictions are conditioned on the instance statistics {µi

d,
σi
d} of the single meta-target sample xi

d and the rescaling statistics {γp, βp} of
the meta-source domain.

As stated in [10,34,23], the rescaling statistics {γ, β} act like an attention
mechanism that measures the contributions of each channel to the current do-
main. When transferring from the meta-source domain to the meta-target do-
main, the rescaling statistics of the domain-shared channels should be kept as
the same since these channels make similar contributions on both domains. In
contrast, the rescaling statistics of the non-shared channels should be calibrated
to learn the meta-target domain-specific information. Therefore, we devise the
learning strategy of the meta-target rescaling statistics in the manner of a scal-
ing of the meta-source rescaling statistics. Specifically, we concatenate σi

d with
γp and µi

d with βp. Then we feed the two concatenated vectors into the rescaling
auto-encoder and infer the meta-target rescaling statistics as:

γ′
d =

1

NS − 1

∑
p ̸=d

(gr([σ
i
d, γp]) + 1) · γp, (10)
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Algorithm 1 The Meta-learning Strategy for DCN

Input: Model fθ, Total Iterations T , Source Domains DS .
Output: Model fθ, Statistics on DS ({µ, σ}, {γ, β}).
1: for all t in 1 · · ·T do
2: Start a meta-iteration:
3: Random split DS into meta-source domains Dp and meta-target domain Dd.
4: Meta-train:
5: Forward and infer meta-source DSBN statistics {µp, σp}, {γp, βp}.
6: Meta-test:
7: Random select one sample xi

d from Dd.
8: Obtain instance statistics {µi

d, σ
i
d} with Eq. (5).

9: Infer standardization statistics with Eq. (6) and Eq. (7).
10: Infer rescaling statistics with Eq. (10) and Eq. (11).
11: Infer ground-truth meta-target DSBN statistics {µd, σd}, {γd, βd}.
12: Compute the total loss with Eq. (13) and backward.
13: end for

β′
d =

1

NS − 1

∑
p ̸=d

(gr([µ
i
d, βp]) + 1) · βp. (11)

where a Tanh activation is further appended to scale the decoder outputs.
After acquiring the inferred rescaling statistics of the meta-target domain, we

minimize its L2 distance with the ground truth {γd, βd} obtained from DSBN
on the meta-target domain:

Lres = ||γ′
d − γd||22 + ||β′

d − βd||22. (12)

3.3 Training and Inference

Training In our meta-learning process, the DCN modules attempt to approxi-
mate the meta-target DSBN statistics conditioned on only a single meta-target
sample and the meta-source DSBN statistics. To obtain the meta-source DSBN
statistics, we need to train the backbone network during the meta-train stage.
Similarly, we should also train the backbone network during the meta-test stage
to acquire reliable meta-target DSBN statistics as the ground truth for the ap-
proximation. Since the meta-source and meta-target domain are randomly se-
lected in each meta-iteration and the whole training process goes through mul-
tiple meta-iterations, we could merge the training of DSBN on both the meta-
source and meta-target domain into only on the meta-target domain. In this way,
the meta-source DSBN statistics can be obtained with only a forward propaga-
tion without additional training, which results in a more simplified and efficient
meta-learning process. The training in the meta-test stage is then composed of
training the DSBN statistics with the classification loss and training the DCN
modules to approximate DSBN with Eq. (9) and Eq. (12). To ensure the dis-
criminality of DCN, we also add a classification loss on the features normalized



Domain-Conditioned Normalization 9

by DCN. The total objective of the meta-test stage is then formulated as:

L = Lcls + λ(L′
cls + L̄stan + L̄res), (13)

where Lcls and L′
cls are standard cross-entropy loss functions for training DSBN

and DCN respectively, L̄stan and L̄res are the average of Eq. (9) and Eq. (12)
for each DCN layer and λ are the balancing weight which is set as the gradient
magnitudes of Lcls. The total training process is shown in Algorithm 1.

Inference The inference process only adds a small amount of computation
to the normalization operation and can achieve nearly the same speed as the
ERM baseline method. When inferring a test example xt in the target domain
DT , we first infer the normalization statistics of DT with xt and the domain-
specific statistics of each source domain on the DCN normalization layers. We
can obtain the inferred statistics through each source domain and we average
them to normalize xt. Next, we put the feature map of xt normalized in this way
into the classifier and get the final prediction result.

4 Experiments

In this section, we present both the quantitative and qualitative results of our
method. Firstly, we describe the datasets and implementation details. Then, we
compare our method with state-of-the-art methods to confirm the effectiveness
of DCN. Furthermore, we conduct the ablation study to analyze the properties
of our method.

4.1 Experiment Setup

Datasets As our evaluation benchmarks. we use PACS [17], VLCS [35] and
Office-Home [36]. Following [17], we apply the leave-one-domain-out protocol for
all benchmarks, which means we leave one domain as the target domain and
the other domains as source domains. For PACS and VLCS, we use the official
split to conduct the experiment. For Office-Home, we split the dataset into 90%
training set and 10% validation set randomly [17]. We select the best model on
the validation set. All the reported results are conducted five times and averaged.

Implementation details For a fair comparison, we follow the implementations
of [2,41,8]. We employ ResNet [9] as our backbone in all experiments and use
the pretrained protocol in [17]. As for optimization, the backbone is trained with
the SGD optimizer with the weight decay of 5e-4; the auto-encoders are trained
with the Adam optimizer. We use a batch size of 32 and train the network for 30
epochs. The learning rate is 0.001 on PACS and Office-Home and 5e-5 on VLCS
for the backbone, and the same for the auto-encoders except 0.0001 on PACS.
Both of the learning rates are decayed by 0.1 at 80% of the total epochs. We also
use some augmentations in RandAug [5] and implement the augmentation with
probability 0.5, which makes the statistics of each source domain more robust.
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Table 1. Comparison with different DG methods (%) using ResNet-18 and ResNet-50
on PACS [17] dataset. The best results are marked as bold. The asterisk means that
ASR-Norm must be combined with RSC.

Backbone Method Photo Art Cartoon Sketch Avg.

ResNet-18

ERM 95.12 78.37 75.16 75.41 81.02
BIN [27] 95.00 82.10 74.10 80.00 82.80

EISNet [39] 95.93 81.89 76.44 74.33 82.15
FACT [41] 95.15 85.37 78.38 79.15 84.51
DSON [28] 95.87 84.67 77.65 82.23 85.11
RSC [11] 95.99 83.43 80.31 80.85 85.15

MetaNorm [6] 95.99 85.01 78.63 83.17 85.70
ASR-Norm * [8] 96.10 84.80 81.80 82.60 86.30
DCN(Ours) 96.51 86.60 81.47 83.60 87.05

ResNet-50

ERM 97.64 84.94 76.98 76.75 84.08
EISNet [39] 97.11 86.64 81.53 78.07 85.84
DSON [28] 95.99 87.04 80.62 82.90 86.64
RSC [11] 97.92 87.89 82.16 83.85 87.83
FACT [41] 96.75 89.63 81.77 84.46 88.15
DCN(Ours) 96.82 89.16 86.09 86.15 89.56

For the dimension of auto-encoders in DCN, the encoders and decoders are
(C,C/2), (C/2, C) in standardization stage and (2C,C), (C,C) in rescaling stage
(C denotes the channel number in that layer). Moreover, the decoder for γ and
β are not shared. We take ϵ as 1e-5. For all experiments, only the BN in the first
three residual blocks is replaced by DCN.

4.2 Comparison with State-of-the-art Methods

In this section, we evaluate our method on PACS, VLCS and Office-Home. We
compare our DCN with recent state-of-the-art DG methods to demonstrate the
effectiveness of DCN.

PACS We use ResNet-18 and ResNet-50 as our backbone to perform the evalu-
ation on PACS. We compare with many normalization-based DG methods, such
as BIN [27], DSON [28], Meta-Norm [6] and ASR-Norm [8]. We also compare
with other SOTA methods, such as EISNet [39], RSC [11] and FACT [41]. The
results are shown in Table 1. The ERM baseline can achieve good performance
on the photo domain, because the photo domain is similar to the pretrained
dataset ImageNet. However, ERM fails on art, cartoon and sketch domains due
to the large distribution shift. When inferring target samples, our DCN takes
full advantage of the single target sample’s hint about the distribution of the
target domain. Therefore, the improvement of DCN on ERM is more obvious
when the distribution shift is larger.

Compared with the SOTA, our DCN significantly outperforms other DG
methods. In ResNet-18, DCN achieves the best performance on three domains
and the second best in the other domain, resulting in the best average accuracy.
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Table 2. Comparison with different DG methods (%) using ResNet-18 on VLCS [35]
dataset. The best performance is marked as bold.

Method Caltech LabelMe Pascal Sun Avg.

ERM 91.86 61.81 67.48 68.77 72.48
JiGen [2] 96.17 62.06 70.93 71.40 75.14

MMLD [24] 97.01 62.20 73.01 72.49 76.18
RSC [11] 96.21 62.51 73.81 72.10 76.16

StableNet [43] 96.67 65.36 73.59 74.97 77.65
DCN(Ours) 98.23 62.11 74.88 75.78 77.75

(a) Classification losses (b) Features & predictions

Fig. 3. The analysis of the divergence between the two outputs. (a) compares the
classification loss of the two outputs, and (b) compares the L2 distance on both the
two feature maps before the classifier and the two prediction vectors. The ablation
study is conducted on VLCS dataset with LabelMe as the target domain.

In ResNet-50, DCN has an improvement of 3.93% and 1.69% over the second best
on cartoon and sketch domains respectively. Moreover, DCN improves 1.41% over
the SOTA method FACT on average accuracy. This results show the effectiveness
of DCN when it is incorporated into different backbones.

VLCS The results on VLCS are presented in Table 2. We compare with four
DG methods: JiGen [2], MMLD [24], RSC [11] and StableNet [43]. Our method
achieves the best performance on three domains and surpasses the latest Sta-
bleNet [43] in terms of average performance. This shows that DCN can also
perform well when the domain shift is small between source and target domains.

Office-Home The results on Office-Home are presented in Table 3. Due to the
variations being mainly background and viewpoint, the distribution discrepancy
is small on Office-Home, and the best DG method lifts very little on Product
and Real-World(0.5% in Product and 0.35% in Real-World). Therefore, ERM
acts as a strong baseline and outperforms many DG methods. Our DCN focuses
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Table 3. Comparision with different DG methods (%) using ResNet-18 on Office-
Home [36] dataset. The best performance is marked as bold.

Method Art Clipart Product Real-World Avg.

ERM 58.90 49.40 74.30 76.20 64.70
CCSA [25] 59.90 49.90 74.10 75.70 64.90

MMD-AAE [19] 56.50 47.30 72.10 74.80 62.70
CrossGrad [30] 58.40 49.40 73.90 75.80 64.40

JiGen [2] 53.04 47.51 71.47 72.79 61.20
DDAIG [45] 59.20 52.30 74.60 76.00 65.50
L2A-OT [46] 60.60 50.10 74.80 77.00 65.60
RSC [11] 58.42 47.90 71.63 74.54 63.12
FACT [41] 60.34 54.85 74.48 76.55 66.56
DCN(Ours) 59.83 57.16 73.78 75.63 66.60

Table 4. The ablation study of different components of our method on the PACS
dataset with ResNet-18. DCR and DCS represent the model are trained with only
the domain conditioned rescaling and domain conditioned standardization components
respectively.

Method Photo Art Cartoon Sketch Avg.

ERM 95.12 78.37 75.16 75.41 81.02
DCR 95.33 80.35 76.02 76.53 82.06
DCS 96.18 85.65 80.76 82.52 86.28
DCN 96.51 86.60 81.47 83.60 87.05

on inferring the normalization statistics for the target domain while the spatial
features such as viewpoint are not reflected on the normalization statistics, so
our method is slightly worse than ERM on Product and Real-World. However,
our method improves 7.76% over ERM on Clipart, which is the hardest gen-
eralization task. It demonstrates once again that DCN is more effective when
the distribution shift between source and target domains is larger. Moreover,
DCN achieves comparable performance to the current SOTA method FACT.
This again validates the effectiveness of our method.

4.3 Ablation Study

Impact of different components Tabel 4 illustrates the effects of domain
conditioned standardization(DCS) and domain conditioned rescaling(DCR) re-
spectively. As shown in Tabel 4, the model only applying DCR has a small
improvement on the baseline, while only applying DCS can improve the baseline
by 5.26%. This is because the difference in standardization statistics between
different domains is much larger than that in rescaling statistics. Furthermore,
the model performs best when applying both DCR and DCS(i.e. DCN), which
validates the necessity of both modules.



Domain-Conditioned Normalization 13

Table 5. The performance comparison of DCN in different locations of the network.
The block1-4 means the first to last residual blocks in ResNet-18, respectively. The
ablation study is conducted on PACS dataset.

Method block1 block2 block3 block4 Photo Art Cartoon Sketch Avg.

Baseline - - - - 95.12 78.37 75.16 75.41 81.02

Model A ! - - - 95.65 83.57 77.86 81.09 84.54

Model B ! ! - - 96.35 85.79 79.86 82.43 86.11

Model C - ! ! - 96.47 85.55 79.61 81.70 85.83

Model D ! ! ! - 96.51 86.6 81.47 83.6 87.05

Model E - ! ! ! 96.59 84.03 78.84 81.37 85.21

Model F ! ! ! ! 96.77 84.72 80.33 81.98 85.95

The divergence between the two outputs We analyse the divergence be-
tween the two outputs in different aspects. Fig. 3(a) compares the classification
loss of the two outputs. The blue line represents Lcls and the red line represents
L′
cls. As shown in Fig. 3(a), the curves of the two classification losses are very

close. Fig. 3(b) compares the distance between the two feature maps before the
classifier(denoted by the blue line) and the distance between the two prediction
vectors(denoted by the red line). We can observe that both distances get smaller
and smaller. These two figures demonstrate that the inferred statistics of the
meta-target domain are reasonable and get closer to the ground truth statistics
of the meta-target domain during training.

4.4 Further Analysis

Effect of where DCN is used We conduct an extensive ablation study to
investigate the effect of where DCN is used. As shown is Table 5, only replacing
BN with DCN in the first residual block can greatly improve the performance
and get 3.52% raise than baseline. As the number of residual blocks using DCN
increases, the generalization performance of the model is getting better and
better. We can also notice that model F is worse than model D and model E
is worse than model C. This is mainly because the normalization statistics in
the last residual block are closely related to semantics, so the use of DCN in
the last residual block may cause certain disturbances. Meanwhile, model B is
better than model C and model D is better than model E. It means the statistics
difference between source and target domains in the first residual block is larger,
so DCN is more needed in block1 to infer the target statistics instead of using
the source statistics during inference.

Weight differences between DCN layers Fig. 4 shows the average weight
(which is learned by the standardization auto-encoder) for each DCN layer when
cartoon is the target domain on PACS dataset. It is obvious that the shal-
low DCN layers have a larger average weight than the deep DCN layers for
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Fig. 4. Analysis of average weights(averaged on each channel) for different DCN layers
when cartoon is the target domain on PACS dataset. The backbone is ResNet-18 and
we only substitute the first 15 BN with DCN.

all source domains. It confirms the intuition that shallow layers extract richer
domain-specific features, so the shallow DCN layers rely more on a single target
sample’s instance information to explore the domain-specific information of the
target domain. On the other hand, deep DCN layers rely more on source statis-
tics because the deep layers extract more semantic features, which are similar
between source and target domains.

5 Conclusions

In this paper, we propose a novel domain generalization method that can infer
the normalization statistics of the target domain and use the inferred statistics to
normalize test data during inference. We name our method Domain Conditioned
Normalization (DCN). DCN simulates the inference process of the normalization
statistics with a meta-learning framework during training, and uses the source
statistics and one single target sample to infer the normalization statistics of the
target domain with an optimization-free procedure during inference. Extensive
experiments on three benchmarks demonstrate that our DCN can infer the rea-
sonable target statistics so that it can achieve state-of-the-art performance for
domain generalization. Furthermore, we conduct the ablation study to analyze
the effects and characteristics of DCN.
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